New Alipore College

Department of Mathematics

Three-year B.Sc. in Mathematics (Honours)

1st Semester Honours

Sl. No.	Paper	Course Out Come
1	Core Course-1	After completion of the course, students learn the techniques
	Calculus, Geometry &	to compute limits, derivatives and integrals of a function and
	Vector Analysis	also the applications of vector algebra in real life problems.
	-	The knowledge of Geometry (2 Dimension and 3 Dimension)
		will help the students to compare 2D shapes and 3D objects
		as well as an understanding that 3D objects compose our
		environments and are all around us.
2	Core Course-2	Learning algebra helps to develop one's critical thinking
	Algebra	skills, that includes problem solving, logic, patterns and
	_	reasoning.

2nd Semester Honours

Sl. No.	Paper	Course Out Come		
1	Core Course-3	Learn the fundamental properties of the real numbers that		
	Real Analysis	underpin the formal development of real analysis. Also get an		
	-	idea of the theory of sequence, series &continuity.		
2	Core Course-4	Students learn to extend group structure to finite permutation		
	Group Theory-I	groups and also to generate groups under given specific		
	_	conditions. Students acquire the knowledge on algebra of		
		logic.		

3rd Semester Honours

Sl. No.	Paper	Course Out Come
1.	Core Course-5	On successful completion of this course, students will be able
	Theory of Real	to compute and analysis limits, continuity& differentiability of
	Functions	functions.
2	Core Course-6	This subject enables the students to acquire knowledge about
	Ring Theory & Linear	various topics under ring theory and to use the axioms that
	Algebra-I	define a ringand also to know the basic properties of rings
		arising from these axioms. Students learn the correspondence
		between the set of ideals and the set of all congruences on a
		ring.
		They learn to compute and use eigenvectors and eigen values
		& also Cayley-Hamilton theorem and its use in finding the
		inverse of a matrix.

3	Core Course-7	They will learn to classify ODEs. Students will also learn to
	ODE & Multivariate	visualize and manipulate ODEs in numerical, and symbolic
	Calculus-I	form. Students will understand the concepts of existence and
		uniqueness of solutions.
		Students get the idea on maximal and normal property of the
		gradient, tangent planes, optimization problems and also to
		help themto develop the ability to solve problems using
		multivariate calculus.
4.	Skill Enhancement	Students get the complete knowledge of C language and they
	Course-A	will be able to develop logics which will help them to create
	C Programming	programs, applications in C
	Language	

4th Semester Honours

Sl. No.	Paper	Course Out Come			
1.	Core Course-8	They learn about theory and applications of Riemann			
	Riemann Integration &	Integration of bounded real valued functions, integrability			
	Series of Functions	sum, scalar multiple, product, quotient, modulus of Riemann			
		integrable functions and properties. They also gets knowledge			
		on convergence of improper integrals, power series& it's			
		convergence and sum of Fourier series.			
2	Core Course-9	Learn to formulate physical problems as PDEs and understand			
	PDE & Multivariate	analogies between mathematical descriptions of different			
	Calculus-II	(wave) phenomena in physics and engineering. They also learn			
		to classify PDEs and apply analytical methods and interpret			
		the solutions.			
		Learn the concept of upper sum, lower sum, upper integral, lower-integral, the double integral and also the computational			
		lower-integral, the double integral and also the computational			
		techniques to determine volume and surface area by multiple integrals.			
3	Core Course-10	Students get the knowledge on the parameters defining the			
3	Mechanics	motion of mechanical systems and their degrees of freedom.			
	Wicehames	They learn on the study of the interaction of forces between			
		solids in mechanical systems, Centre of mass and inertia of			
		mechanical systems and applications of mechanics.			
4.	Skill Enhancement	After completion of the course students are able to install and			
	Course-B	read data files in R/ SageMath. They will also learn to perform			
	Scientific computing	various operations and apply the common functions to			
	with SageMath/R	manipulate and analyze data using basic R/SsgeMath.			

5th Semester Honours

Sl. No.	Paper	Course Out Come	
1.	Core Course-11	They will be able to calculate probabilities using Conditional	
	Probability & Statistics	probability, rule of total probability and Bayes' theorem. They	
		will also be able to explain the concept of random variable, the	
		probability distributions and to analyze statistical data.	
2	Core Course-12	Learn the applications of factor groups to automorphism	
	Group Theory-II &	groups, external direct product and its properties, Inner product	
	Linear Algebra-II	spaces, dual spaces and diagonalization of symmetric matrices,	
3	Discipline Specific	At the end of the course, students should have an enhanced	
	Elective- A (1)	knowledge and understanding of mathematical modeling and	
	Bio Mathematics	statistical methods in the analysis of biological systems, be	
		better able to assess biological inferences that rest on	
		mathematical and statistical arguments.	
4.	Discipline Specific Students will learn the techniques for modelling and		
	Elective- B (1)	many real-world operational problems. They will linear the	
	Linear Programming&	inequalities and convex sets, primal simplex method, duality,	
	Game Theory	integer programming and the two-person zero sum problems/	
		matrix games.	

6th Semester Honours

Sl.	Paper	Course Out Come			
No.					
1.	Core Course-13	They will understand and learn the concept of a metric space and be able to			
	Metric Space &	recognize standard examples. Be familiar with the fundamental notions of			
	Complex	continuity, convergence and compactness.			
	Analysis	Students will be able to identify curves and regions in the complex plane defined			
		by simple expressions, basic properties of complex integration and having the			
		ability to compute such integrals. They learn when a function is analytic.			
2	Core Course-14	Students learn to derive numerical methods for various mathematical operations			
	Numerical	and tasks, such as interpolation, differentiation, integration, the solution of linear			
	Methods	and nonlinear equations, and the solution of differential equations.			
3	Core Course-14	They learn to compute the values of any mathematical task with the help of the			
	Practical	numerical methods like, interpolation, differentiation, integration, the solution of			
	Numerical	linear and nonlinear equations and the solution of differential equations with the			
	Methods Lab	help of computer software programming.			
4	Discipline	The course provides rigorous instruction in fundamental mathematical concepts			
	Specific	and skills presented in the context of real-world applications. Students also learn			
	Elective- A (2)	about power series solution of			
	Mathematical	Bessel'sequationandLegendre'sequation,Laplacetransformandinversetransform.			
	Modelling				
5	Discipline	Students learn about an intense foundation in fundamental concepts of point-set			
	Specific	topology. They learn about Topological spaces, basis and sub-basisfor a topology,			
	Elective- B (2)	countability, connected spaces and the concept of compactness in metric space.			
	Point Set				
	Topology				

Three-year B.Sc. in Mathematics (General)

Sl. No.	Semester	Paper	Course Out Come
1	1 st Semester	Core Course-1A Mathematics-CC1/GE1 [Algebra-I, Differential Calculus-I, Differential Equation-I, Coordinate Geometry]	Learning algebra helps to develop one's critical thinking skills, that includes problem solving, logic, patterns and reasoning. They will also be able to solve second order and higher order linear differential equations, to compute derivativesand itsapplications. The knowledge of Geometry (2 Dimension and 3 Dimension) will help the students to compare 2D shapes and 3D objects as well as an understanding that 3D objects compose our environments and are all around us.
2	2 nd Semester	Core Course-1B Mathematics- CC2/GE2 [Differential Calculus- II, Differential Equation-II, Vector Algebra, Discrete Mathematics]	They learn about convergence and divergence of Infinite series of constant terms, Mean value theorems, application of principle of maxima and minima for a function in single variable in geometrical and physical problems. They also learn about solution of linear homogeneous and non-homogeneous equations with constant coefficients. Students learn about vector operations and its applications in Geometry & Mechanics. Principle of Mathematical Induction, Application of Congruences.
4.	3 rd Semester	Core Course 1C Mathematics- CC3/GE3 [Integral Calculus, Numerical Methods, Linear Programming] Skill Enhancement Course-1 (SEC A) C Programming Language	They learn to evaluate definite integrals, Improper Integrals. Students also learn to derive numerical methods for various mathematical operations and tasks, such as interpolation, integration, the solution of linear and nonlinear equations, techniques for modelling and solving many real-world operational problems. They will linear about convex sets, primal simplex method, duality. The study will provide complete knowledge of C language. Students will be able to develop logics which will help them to create programs, applications in C. Also by learning the basic programming constructs they can easily switch over to any other language in future.

5.	4 th Semester	Core Course 1D Mathematics- CC4/GE4 [Algebra-II, Computer Science & Programming, Probability & Statistics]	Students will learn about Group Theory, Ring, Field, Concept of Vector space over a Field and Eigen Values & Eigen Vectors. The study will provide complete knowledge on Computer generations and computer anatomy, number systems, concepts on different programming languages and Algorithms & FlowCharts. They will be able to calculate probabilities using Conditional probability, rule of total probability and Bayes' theorem. They will also be able to explain the concept of random variable, the probability distributions and to analyze statistical data.
6.		Skill Enhancement Course 2-(SEC B) Mathematical Logic	After completion of the course students are expected to be able to: Analyze logical propositions via truth tables
7.	5 th Semester	Skill Enhancement Course-3 (SEC A) Object Oriented Programming in C++	They learn to demonstrate an understanding of algorithms in the problem-solving process, identify the necessary properties of good problem-solving techniques, Create and analyze algorithms for solving simple problems.
8.		Discipline Specific Elective-1A Particle Dynamics	They understand and use basic terms for the description of the motion of particles, vector functions and the fundamental laws of Newtonian mechanics.
9.	6 th Semester	Skill Enhancement Course-4 (SEC B) Boolean Algebra	They learn to use truth tables and laws of identity, distributive, commutative and domination. They learn to compute sum of products and product of sum expansions and convert boolean expressions to logic gates and vice-versa.
10.		Discipline Specific Elective-1B (DSE B) Mathematical Finance	Students will learn to demonstrate understanding of concepts relating to functions and annuities, employ methods related to these concepts in a variety of financial applications. They also apply logical thinking to problem solving in contextand use appropriate technology to aid problem solving.